载汉防己甲素磁性聚乳酸-羟基乙酸共聚物纳米粒及磁感应加热诱导药物释放的研究

陈春生,傅德皓,郑思维,史琛

中国药学杂志 ›› 2015, Vol. 50 ›› Issue (21) : 1893-1898.

PDF(1065 KB)
PDF(1065 KB)
中国药学杂志 ›› 2015, Vol. 50 ›› Issue (21) : 1893-1898. DOI: 10.11669/cpj.2015.21.012
论 著

载汉防己甲素磁性聚乳酸-羟基乙酸共聚物纳米粒及磁感应加热诱导药物释放的研究

  • 陈春生a,傅德皓b,郑思维a,史琛a*
作者信息 +

Effect of Inductive Heating on Drug Release of Tetrandrine-loaded PLGA Magnetic Nanoparticles

  • CHEN Chun-shenga, FU De-haob, ZHENG Si-weia, SHI Chena*
Author information +
文章历史 +

摘要

目的 制备载汉防己甲素的磁性聚乳酸-羟基乙酸共聚物(PLGA)纳米粒,通过磁感应诱导加热纳米粒,研究加热前后载药磁性纳米粒粒径,形态学及药物释放的变化。方法 采用乳化分散溶剂挥发法制备载汉防己甲素聚乳酸-羟基乙酸共聚物磁性纳米粒;利用激光粒径仪(DLS)、扫描电镜(SEM)、透射电镜(TEM)、振动样品磁强计(VSM)对纳米粒的理化性质及磁性能进行考察;采用RP-HPLC及ICP-MS测定药物及Fe3O4载药量、包封率。EASYHEAT磁感应加热系统对载药纳米粒进行加热,考察加热前后纳米粒粒径,形态及药物释放量的变化。结果 载汉防己甲素聚乳酸-羟基乙酸共聚物磁性纳米粒呈大小均一,表面光滑圆球形,磁性颗粒均匀分散在聚乳酸-羟基乙酸共聚物纳米粒内部;振动样品磁强计结果显示,载汉防己甲素磁性聚乳酸-羟基乙酸共聚物纳米粒具有良好的超顺磁性;汉防己甲素及Fe3O4均具有良好的包封率和载药量。运用磁感应加热至45 ℃后,磁性纳米粒粒径变大,形态发生聚集破裂,聚乳酸-羟基乙酸共聚物纳米粒内Fe3O4磁性颗粒发生重排,药物释放量明显增加。结论 具超顺磁性载汉防己甲素聚乳酸-羟基乙酸共聚物纳米粒,在磁感应加热作用下,能有效控制药物的释放。

Abstract

OBJECTIVE To prepare PLGA magnetic nanoparticles loaded with tetrandrine, heat the nanoparticles by inductive heating system, and study the particle size, morphology and drug release before and after heating. METHODS Co-loaded PLGA NPs were prepared by emulsion solvent diffusion method; the physicochemical and magnetic characteristics of co-loaded PLGA NPs were investigated by DLS, SEM, TEM and VSM; RP-HPLC and ICP-MS analysis were used to measure the tetrandrine and Fe3O4 loading and entrapment efficiency. The EASYHEAT system was applied to heat the nanoparticles and further investigate the changes of particle size, morphology and drug release after inductive heating. RESULTS Tetrandrine-loaded PLGA magnetic nanoparticles showed spherical shape with smooth surface and the Fe3O4 NPs were homogeneously distributed inside the polymeric nanoparticles; VSM result indicated that the co-loaded PLGA NPs were superparamagnetic; both tetrandrine and Fe3O4 showed good loading and entrapment efficiency. After being heated to 45 ℃, the diameter of co-loaded PLGA NPs increased; the morphology changed from a spherical shape into a nondefined, irregular shape; arrangement or aggregation of the incorporated Fe3O4 NPs were found. In addition, the drug release amount was also increased. CONCLUSION With superparamagnetic property, the tetrandrine loaded-PLGA magnetic nanoparticles can effectively control the drug release behavior by inductive heating.

关键词

汉防己甲素 / 聚乳酸-羟基乙酸共聚物 / 磁性纳米粒 / 磁感应加热 / 药物释放

Key words

tetrandrine / PLGA / magnetic nanoparticle / inductive heating / drug release

引用本文

导出引用
陈春生,傅德皓,郑思维,史琛. 载汉防己甲素磁性聚乳酸-羟基乙酸共聚物纳米粒及磁感应加热诱导药物释放的研究[J]. 中国药学杂志, 2015, 50(21): 1893-1898 https://doi.org/10.11669/cpj.2015.21.012
CHEN Chun-sheng, FU De-hao, ZHENG Si-wei, SHI Chen. Effect of Inductive Heating on Drug Release of Tetrandrine-loaded PLGA Magnetic Nanoparticles[J]. Chinese Pharmaceutical Journal, 2015, 50(21): 1893-1898 https://doi.org/10.11669/cpj.2015.21.012
中图分类号: R944   

参考文献

[1] REDDY L H,ARIAS J L,COUVREUR P,et al. Magnetic nanoparticles: Design and characterization, toxicity and biocompatibility, pharmaceutical and biomedical applications[J].Chem Rev,2012, 112 (11):5818-5878.
[2] PANKURST Q A, CONNOLLY J, DOBSON J, et al. Applications of magnetic nanoparticles in biomedicine[J].J Physics D:Appl Physics, 2003, 36:167-181.
[3] CORCHERO J L, VILLAVERDE A.Biomedical applications of distally controlled magnetic nanoparticles[J].Trends Biotechnol, 2009, 27(8): 468-476.
[4] ITO A, SHINKAI M, KOBAYASHI T, et al. Medical application of functionalized magnetic nanoparticles[J]. J Biosci Bioeng, 2005,100(1): 1-11.
[5] KUMAR C S, MOHAMMAD F. Magnetic nanomaterials for hyperthermia-based therapy and controlled drug delivery[J]. Adv Drug Deliv Rev,2011, 63(9):789-808.
[6] MALVANDI A M, HADDAD F, MOQHIMI A. Acute restraint stress increases the frequency of vinblastine-induced micronuclei in mouse bone marrow cells[J]. Stress, 2010, 13 (3):276-280.
[7] DANHIER F, ANSORENA E, PRAT V, et al. PLGA-Based nanoparticles: An overview of biomedical applications[J]. J Controlled Release,2012, 161(2): 505-522.
[8] DINARVAND R, SEPEHRI N, ATYABI F, et al. Polylactide-Co-Glycolide nanoparticles for controlled delivery of anticancer agents[J]. Int J Nanomed, 2011, 2011(6):877-895.
[9] GELPERINA S, KISICH K, HEIFETS L, et al. The potential advantages of nanoparticle drug delivery systems in chemotherapy of tuberculosis[J]. Am J Respir Criti Care Med, 2005, 172(12):1487-1490.
[10] PARK B H, KOO B S, KIM M K, et al. The induction of hyperthermia in rabbit liver by means of duplex[J]. Korean J Radiol, 2002, 3(2):98-104.
[11] WAHAJUDDIN, ARORA S. Superparamagnetic iron oxide nanoparticles:Magnetic nanoplatforms as drug carriers[J].Int J Nanomedicine,2012, 2012(7): 3445-3471.
[12] NINGTHOUJAM R S, VATSA R K. Heating tumors to death using functionalized Fe3O4 magnetic nanoparticles[J]. BARC News Lett, 2011,323:18-23.
[13] CHIANG W L, KE C J, SUNG H W, et al. Pulsatile drug release from PLGA hollow microspheres by controlling the permeability of their walls with a magnetic field[J]. SMALL, 2012, 8(23): 3584-3588.
[14] DAHAKE G. Nanoparticle Heating Using Induction in Hyperthermia. ASM Handbook, Volume 4C, Induction Heating and Heat Treatment [M]. 10th ed.Ohiooh:ASM International Press,2014:4-5.
[15] CAI X H, SHUAI W, BAO A C. Research advances on the pharmacological effects of tetrandrine[J].Chin J Nat Med(中国天然药物), 2011,9(6):473-480.
[16] LI R, LI X, LIU B, et al. Preparation and evaluation of PEG-PCL nanoparticles for local tetradrine delivery[J]. Int J Pharm,2009, 379(1): 158-166.
[17] NAFEE N, FRIEBEL K, DONG M, et al. Treatment of lung cancer via telomerase inhibition: Self-assembled nanoplexes versus polymeric nanoparticles as vectors for 2′-O-Methyl-RNA[J]. Eur J Pharm Biopharm, 2012,80(3):478-489.

基金

国家自然科学基金面上资助项目(81370980)
PDF(1065 KB)

Accesses

Citation

Detail

段落导航
相关文章

/